A Characterization of Distance Between 1-Bounded Compact Ultrametic Spaces Through a Universal Space
نویسندگان
چکیده
The category of 1-bounded compact ultrametric spaces and non-distance increasing functions (KUM's) have been extensively used in the semantics of concurrent programming languages. In this paper a universal space U for KUM's is introduced, such that each KUM can be isomet-rically embedded in it. U consists of a suitable subset of the space of functions from 0; 1) to IN, endowed with a \preex-based" ultrametric. U allows to characterize the distance between KUM's in terms of the Haus-dorr distance between its compact subsets. As applications, it is proved how to derive the existence of limits for Cauchy towers of spaces without using the classical categorical construction and how to nd solutions of recursive domain equations inside Pnco(U).
منابع مشابه
A Characterization of Distance between 1-Bounded Compact Ultrametric Spaces through a Universal Space
The category of 1-bounded compact ultrametric spaces and non-distance increasing functions (KUM’s) have been extensively used in the semantics of concurrent programming languages. In this paper a universal space U for KUM’s is introduced, such that each KUM can be isometrically embedded in it. U consists of a suitable subset of the space of functions from [0, 1) to IN, endowed with a “prefix-ba...
متن کاملFUZZY BOUNDED SETS AND TOTALLY FUZZY BOUNDED SETS IN I-TOPOLOGICAL VECTOR SPACES
In this paper, a new definition of fuzzy bounded sets and totallyfuzzy bounded sets is introduced and properties of such sets are studied. Thena relation between totally fuzzy bounded sets and N-compactness is discussed.Finally, a geometric characterization for fuzzy totally bounded sets in I- topologicalvector spaces is derived.
متن کاملCharacterization of fuzzy complete normed space and fuzzy b-complete set
The present paper introduces the notion of the complete fuzzy norm on a linear space. And, some relations between the fuzzy completeness and ordinary completeness on a linear space is considered, moreover a new form of fuzzy compact spaces, namely b-compact spaces and b-closed spaces are introduced. Some characterizations of their properties are obtained.
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 193 شماره
صفحات -
تاریخ انتشار 1998